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Sequential Point Estimation of Quantiles
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ABSTRACT

1

•

•

Let X;, X 2 • •• be independent observations from a distribution F. Suppose that one wishes to estimate the

i h quantile ~p of F, subject to a loss function that is a linear combination of the squared error in estimation and

the cost of sampling. One may stop after any number of observations n and estimate ~p by the sample pth

quantile. If F'(~p) = f{~p) is known, the best fixed sample size (i.e., in the sense of minimum risk) can be used.

However, iff{~p) is unknown, then the best fixed sample size is also unknown. For this case a stopping rule is
proposed. It is shown that under certain smoothness conditions on F and a growth condition on the delay, the
sequential procedure derived is asymptotically risk efficient. The results are then extended to a more general
loss structure. Estimation of a linear combination of two quantiles, e.g., the interquartile range, is also studied.
Results of simulation studies are provided.

KEY WORDS: Asymptotic risk efficiency; Bahadur representation of quantiles; Sequential estimation;
Stopping rules; Uniform integrability.

1. INTRODUCTION

Let X;, X 2 • •• be independent observations on a distribution function F. Let ;p be the pth
quantile ofF, i.e.,

;p = F-'(p) = inf {x:F(x) ~ p}, 0 <p < 1.

Given a sample of size n, a natural estimate of qp is the sample pth quantile ~pn =F,,-I (p) ,

where F;, (.) is the empirical distribution function of X;, X2 ... , Xn • In terms of order statistics,

; pn is defined as:

X""I' if np is an integer,

•
A

;pn =

X
[n:np]+J

otherwise.

where Xn:i is the ith order statistic among X;, .. ,Xn and [x] denotes the integer part ofx.

Suppose one wishes to estimate qp by ; pn subject to the loss function
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•
that is, the loss is a linear combination of the squared error in estimation and the cost of
sampling, normalized in such a way that the cost per observation is one. For a fixed sample
size n (one determined before taking any observations), the risk is

Assume in what follows that F is twice differentiable at]: and F'(]: ) - f(]: ) > 011 ':tp ':tp - ':t p .
A

From Bahadur (1996), C;p" can be expressed as an average of random variables via the

empirical distribution function, that is,

•
(2)

where R" = O(n-3
/
4(log n)3/4) a.s. as n -+ 00. As will be seen later, the remainder term R;

plays a key role in this study. From Theorem 2 of Duttweiler (1973), ER; = O(n-3
/
2

) as

n -+ 00. Therefore, the risk is asymptotically up to O(n-S
/
4

) ,

(3)

Treating n as a continuous variable and differentiating the above function with respect to n,

one finds that R" is minimized by the best fixed sample size •
(4)

and the minimum risk is

R ~ 2.fA .Jp(1- p) ~ 2n .
"0 !CC;p) 0

(Notice that no ~.fA .Jp(1- p) , where .Jp(l- p) is the asymptotic standard deviation of
f(c;p) I(c;p)

.In(~pn - C;P),) However, when I(C;p) is unknown, no fixed sample size n minimizes R "

uniformly for all values of f(c;p) , i.e., the best fixed sample size cannot be calculated. This

motivates the need for a sequential estimation procedure.
A number of authors have studied the problem of sequential bounded-length confidence

interval estimation for quantiles. Farrell (1966) considered two sequential procedures for
constructing bounded-length confidence intervals for any quantile. Swanepoel and Lombard
(1978) investigated a variant of Farrell's first procedure, limiting the problem to the class of
continuous distribution functions. Geertsema (1970) constructed a sequential confidence

•

•
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• interval for the median of a symmetric distribution based on rank tests and established the
convergence rate of the coverage probability (as the prescribed length of the interval tends to
zero) in Geertsema (1985). Sen and Ghosh (1971) studied the same problem using one
sample rank-order statistics. At present, however, no sequential procedure is yet available for
the point estimation of quantiles. In this paper, a stopping rule for estimating any single
quantile, under the loss structure described above, is proposed.

Define sequences {kIn} and {k2n} such that

~ =p _ ~p(l - p) and k2n =p +~p(1- p) .
n n n n

(5)

• Without loss of generality, assume in what follows that kin and k2nare integers. As in (2),

Bahadur (1966) provides the following representations for the "central" order statistics X n:kln

and Xn'k :, 2n

(6)

(7)

•

•

•

where R~ = O(n-3
/
4 (log n)(MI)/2) a.s. as n ~ ex), for any 11 ~ Y2, for i = 1, 2. An estimator

for f(~p) readily obtained from (6) is

J(~p) = 2r1:
p) X"" ~ X••"

which converges to f(~p)as n ~ ex), with probability one. The stopping rule

T -' f{ > ..Jp(l - p) <~} -' f{> .!!.. (X - X )2 <~} (8)A - In n - nA' A - Ii - m n - nA • mk nik - ,
f(~p) v A 4 . 2. ' I. A

where nA is a positive integer which may depend on A, may then be used and ~p estimated by
A

~ T • The performance of this sequential procedure is summarized in the following theorem.
p A

THEOREM I. Suppose X;, X2. .. are independent observations with a common distribution

function F. Assume that F is twice differentiable at ~p with F'(~p) =f(~p) > O. Assume
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further that f' exists and is bounded in a neighborhood of c;p' and that EIX11). < 00 for some .

Ii> O. If TA is defined by (8) and nA =cA8 .for some c > 0,8 E (O,~), then as A ~ OCI,

•

(9)

(10)

and

(11) •
In other words, the proposed sequential procedure performs asymptotically as well as the
procedure that uses the optimal fixed sample size, under the loss structure (1).

REMARK 1. If one. is willing to impose more conditions on the density f, then there are

better estimates of f( c;p)than the one used here. For example, iff is twice differentiable on

the real line andf f', and f" are bounded, then the uniform almost sure convergence rate of

an appropriate kernel estimate offis n-1/3 ((1og(1og n)YI2 (see Prakasa Rao (1983), Theorem
2.1.12). The almost sure convergence rate of the estimate used in the current work is

6+1

n-1/4(1og n)-2. However, the estimate is simple, requires fewer assumptions onf, and as
Theorem 1 shows, yields asymptomatic efficiency.

Theorem 1 provides an asymptotically risk-efficient procedure for estimating quantiles
relative to one particular loss function a linear combination of the squared error in estimation
and the cost of sampling. A proof is provided in the next section.

The procedure constructed above can be modified to work for other loss functions, for
instance, one that involves the absolute instead of the squared error in estimation. An
extension of Theorem 1 is discussed in Section 3. Simulation results are provided in Section
4.

2. PROOF OF THEOREM 1

The proof of Theorem 1 depends on a series of six lemmas, the first of which provides

conditions under which positive powers of A-1/2 TA are uniformly integrable.

LEMMA 1. Suppose F has a derivative on (F-1(p - s),F-1(p + s)) and

•

F'(X) = f(x)? fa > 0 for every x in (F-1(p - s), F-1(p + s)), (12)

for some fa, e > O. Assume also that Elx; I). < 00 for some Ii > O. IfTA is defined by (8), then

for every s > 0,

•
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{(A-1I2~r, A ~ I} is uniformly integrable.

PROOF. It suffices to show that as K ~ 00,

5

uniformly in A for all 0> 0. Fix A> °and let m = [KAI12]. By the definition of fA, for any

0>0,

•

•

•

•

It follows from the proof of Theorem 2 of Sen (1959) that for every 0> 0, as m ~ 00,

for the s>°that satisfies (12). Therefore,

E { m'" ( X""~ - r'C:J) lO(I) as m --+ "', forj = 1,2.

Now note that by the Mean Value Theorem, there exisits r; E(~, k2 m
) such that

m+I m+I

F- 1(~) - F-I(-~)I =2JP(1- p) I( F-1
) ' (r;).

m+I 111+1 m

, 1
By (12), (p-I) (r;) ~ - < 00 for 111 sufficiently large, and so as m ~ 00,

fa

Thus, as m ~ 00,

and hence from (13), as K ~ 00,

p(TA > KA1
/
2) ~ AO/20 (m-O) =O(AO/2A-o/2K-o)=o(K-J )

uniformly in A, proving Lemma 1.

(13)

(14)

(15)
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The following lemma is patterned after Lemma 1 of Bahadur (1966), a basic element in
the derivation ofhis representations for sample quantiles and central order statistics.

LEMMA 2. SupposeF is twice differentiable at ~p with F' (~p ) = f( ~p) > O. Let {an} be a

sequence ofpositive constants such that an - Co n-P as n ~ 00, for some Co >0, P E (~,~).

Put

•

Then for every t > 0, as n ~ 00,

E( In(p+1I4) HpnO = 0(1). •

PROOF. Let {bn}be a sequence of positive integers such thate, - Co nl
/
4

, n ~ 00. For

integers r = -bn, ... , bn, put

17r,n =~p+ ~n r; ar,n =F(17r+l,n) - F( 17r,n)'
n

and

Gr,n =I~(1]r,n) - ~(~p) - [F( 17r.n) - F(~p)] \.

Let

By the monotonicity of F,. and F, it follows that

(16)

•

an -(p+I/4) bSince n - n - - - n as n ~ co ; for -bn ~ r ~ bn - 1, then y the Mean Value'Ir+l,n 'Ir,n - b
n

Theorem,

< F' (;; ) -(p+1/4) b < < b 1_ sup '=' p +x n ,n ---t 00, - n - r - n - ,
Ixl:!::an

for n sufficiently large. Hence, Pn = o(n-(P+1/4)), n ---t 00, and so by (16), it suffices to show

that for all t > 0,

Since K; > 0 a.s., one can write

•

•
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E(ln(P+1/4)K
n
n=trxl

-
1P(n(P+1/4)K

n
~x)dx

s constant + t .c X I
-

1p(n(p+1/4)x, ~ x) dx

for all M> 0, The proof is completed by showing that for x> 0,

7

(17)

•

•

•

The proof of asymptotic risk efficiency involves finding asymptotic bounds for the
moments of the remainder terms in the representations (2) and (6). The desired moment
bounds are provided in the next two lemmas.

LEMMA 3. Suppose F is twice differentiable at C;p with F' (C;p) = f( C;p) > 0, and that

E IX11-t < 00 for some Il. > 0. Let

R _): _~ _ P-F:(C;p)
" - ~/'" -I' f(C;p)

If f' exists and is bounded in a neighborhood of C;p' then for any r< % and for every t > 0.

E(I n' R" I') =0(1), n~ 00.

REMARK 2. Duttweiler (1973) obtained a sharper bound for the case when t=2,

E (s,2
) =o(n-3/2) , n~ 00,

as noted earlier.

PROOF OF LEMMA 3. 'Write

A

By Taylor's Theorem, if n is sufficiently large, there exists a number S'between C;pn and C;p
such that
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..

Assume y E (Y2,%) and set p = y-~. From (14), (18), and Lemma 2, for every r > 0, as n ~

(19)

where [np] s i* s [np] + 1. It can be shown that •
(20)

This implies that as n ~ aJ, for y E (~, %) and hence for any y< %,

It follows from (20), Markov's inequality and the Marcinkiewicz-Zygmund Inequality (see,
for example, Lemma 2.2.2B of Serfling (1980), or Corollary 10.3.2 of Chow and Teicher

(1978)) that as n ~ aJ, for y< %, ifP = r : ~, •

This completes the proof of Lemma 3.

LEMMA 4. Suppose F is twice differentiable at;p with F'(;p ) = f(; p ) > 0, and that

EIXtl" < oofor some A. > 0. Define

and let Rn = ~2 - R~ . If f' exists and is bounded in a neighborhood of ;p , then for any

y< % and/or every t > 0,

•

•
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SKETCH OF PROOF. It can be shown that

for every r > 0, and that

E(IR~I'I{I _I _p})~o(n-rl),n~oo,
Xn :k In ~p >n

as in the proof of Lemma 3. This implies that

9

(21)

•

•

The proof for R; is similar.

The following provides conditions for uniform integrability of negative powers of

A- 1/2 t..

LEMMA 5. Suppose that F is twice differentiable at ~p with F' (~p ) = f (~p ) > 0, and

that f' exists and is bounded in a neighborhood of ~p' Assume further that Elx; IA < 00for

some A > O. IfTA is defined by (8) and nA =cAe> for some c > O. 0> 0, thenfor every s > O.

{(A- I12~) -s , A ;?: I} is uniformly integrable.

To prove Lemma 5, by Lemma) of Chow and Yu (1981), it suffices to prove that for s >
O/and some rE (0, 1),,.

This can be shown using Lemma 4, or, alternatively, using (7.3.9) of Sen (1981). The proof
is omitted.

The following results of Chow and Yu (1981), which deals with uniform integrability of
randomly stopped sums, will be applied in the proofs that follow. The reader is referred to
the cited paper for the proof.

LEMMA 6. (Chow and Yu (1981)) Let r;,~, ... be independent random variables with EYn

= 0 for each n e 1. Assume that for s ;?: 2, {I Y" IS, n ;?: I} is uniformly integrable. Let .% be

the a-algebra generated by {r;, ~ ...,Y,,} for each n e 1,F 0 = (¢J, n),and let {M( b), b E B} be
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In-stopping times with Be (0,00) such that {(b-1M(b)r'2, bE B} is uniformly integrable.

Let Jif" =2:;=I~' Then {I b-
I
/
2W

M(bl b e B} is uniformly integrable.

PROOF OF THEOREM 1. Define the sequence of random variables

•

and let g(n) = n2 /2(~p). It is readily seen that Yn > 0 a.s., and Yn ~ 1 a.s.
p(l- p)

Moreover, g(n»OVn,g(n)~oo and g(n) ~I asn-+co.
g(n -1)

Write TA =inf{n~nA:Yn ~g~)} By the definition of Zg,

g(TJ g(TA-1)
YT ~-- and YT -1 > I{ j'

A A A A TA' nA

Since nA =o(A1/2) as A ~CX), then g(TA
) ~ 1 a.s. as A ~ 00. But

A

g (TA) = TA
2
/2 ( ~p) =( TAJ2

A Ap(I- p) no

asn ~co. •

•

Therefore, as in Lemma 1 of Chow and Robbins (1965), (9) is obtained. (10) follows
immediately from (9) and Lemma 1 (with s = 1).

To prove (11), notice that

By (10), it is enough to show that

By the definition of TA , TA ~ 00 a.s. as A ~ 00 and so Bahadur's result (2) holds when the
sample size n is replaced by the stopping time TA, i.e.,

•

•
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(21)

•

where 1'; =II I' i =1, 2,... By Anscombe's Theorem (Anscombe (1952», in view of the
\x;"~p

asymptotic normality of J: and the almost sure convergence of A- 1/2T
A ,

(y, -p) d

.jT;.J T
A ~ N(O, 1) as A~ 00 •

p(1- p)

Hence aszt-e-eo,

converges in distribution to a Chi-squared distributed random variable with one degree of

freedom. By Lemma 1, for every t > 0. {(A-1/2TAr'A ~ I} is uniformly integrable,

and so by Lemma 6, for every t > 0,

•

•

{ A-u, t.(I; - p) " A " 1} is uniformly integrable.

Furthermore, by Lemma 5, for every 1 '» 0,

{(A- 1/2T
Ar,:12: I} is uniformly integrable.

Using Holder's inequality, one obtains from (22) and (23) that

{ IA 1/4 (~A - p)i',A;::: I} is uniformly integrable,

for every t > O. Thus, the first term in the right side of(21) converges to ,jp ( -t
f ~p

as A ---+ co. It therefore remains to show that

(22)

(23)

(24)

•
for then the rest of the terms in the right side of(21) would vanish as A ---+ co. In view of(23),
it is enough to show that for some s > 1,
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By Lemma 3, as A ~ co, for any s > 0,

(25) •

E( ITAR
TA

2r) ~ 0(1) fn- ps
p(u-l)lu (TA= n), u> 1,

n=nA

where °< f3 < Y2. But by Holder's inequality, for any integer N,

Taking limits as N ~ co, one obtains, given any s > 0,

by choosing u sufficiently large. Therefore, (25) is proved and hence, (11). This completes
the proof of Theorem 1.

3. EXTENSIONS

3.1 Estimating a Single Quantile Using Other Loss Functions

As in the previous section assume that one wishes to estimate the pth quantile of a
A

distribution function F in some optimal fashion. One may wish to estimate Z by;:
~ p ~pn'

subject to the loss

..

•

(26)

where r is some positive real number. In this section, a procedure for estimating the pth

quantile of F that is asymptotically risk efficient relative to the loss structure (26) will be
derived.

Assume that F is twice differentiable at C;p with F' (C;p) = f(C;p ) > 0.

•

(27)

Furthermore, if f' is bounded in some neighborhood of C;p, and EI.xtA < 00 for some

A > 0, one can show that

{IJii (~pn - C;p)r, n :2: I} is uniformly integrable, (28) •
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A

by applying Bahadur's representation of C;pn and Lemma 3, or Sen's (1959) result. Thus, for

large n, the risk is approximately

(29)

where

•
(30)

Differentiating (29) with respect to n (treated as a continuous variable), one finds the best
fixed sample size

(31)

•

The corresponding minimum risk is

R (
2)[ I' (p(1_p)JI'12JI'~2 (1'+2)::::: 1+- A-K ::::: -- n .

no r 2 I' f2(C;p) r 0

But the best fixed sample size is unavailable when f(C;p) is unknown. For this case, the

following stopping rule is proposed:

..
T, ~ in{, ~ 1/,

= inf{II "n,:

1'+2 }- 1'-

,,1/ \'. X 2n 2

C (. "'," - """,)) s rK,A

1'+1 }
X -X I' <~«-, n:k!n) - -x,A ' (32)

•

where nA is an integer which may depend on A, and {kIn} and {k2n} are as defined in (5).
A

C;p can then be estimated by e;pTA' The following theorem summarizes the effectiveness of

this sequential procedure as compared with the best fixed-sample-size procedure.

THEOREM 2. Suppose Xi, X2,'" are independent observations with a common distribution

function F. Assume that F is twice differentiable at e;p with F'(C;p) = f( C;p) > 0, and that

EI~ IA < 00 for some A > O. Assumefurther that f' exists and is bounded in a neighborhood
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of ~p' If TA is defined by (32) and nA =cAo , for some c > 0, 8 E (0, _2_), r > 0, then as
r+2

A ~OO,

•

and

t;
-~ 1a.s.,
no

~1.

(33)

(34)

(35)

•

Theorem 2 is a generalization of Theorem I, and is proved using arguments similar to
those of the previous section. A sketch of the proof is provided below.

PROOF OF THEOREM 2. As in Section 2, one can show that

T
_.1 -) 11l.S. as A~ 00

III)

and for every s > 0,

•

{(A-2/(r+2)~r'A ~ I} is uniformly integrable. (36)

Hence (33) and (34) are easily obtained. To verify (35), in view of (34), it is enough to show
that as A ~ 00 , •

(37)

A p-~

Let Y; = I(Xi S; qpI' i =1, 2, . . . . As above, one can express ~pTA - ~P = f(~J+ RTA ' where

R
TA
=O(TA-3/4(logTA)3/4)a.s.asA~00. Applying (33), Anscombe's Theorem and the

Slutsky-Cramer rule (see, for example, Theorem 1.5.4 ofSerfling (1980)), one can verify that

as A ~ 00,

•



•

•

•

•
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and hence as A~ 00 ,

If

{ A,:, (~pT, - ~p) ',A;' I} is uniformly integrable,

then as A~oo,

which is equivalent to (37). Thus, it suffices to show that (40) holds. But

As in Section 2, one can show that

(This is a generalization of (24).) Therefore, it is enough to verify that

{ A,:, (p - ¥rJ r A ;, I} is uniformly integrable.

By a slight modification of the proof of Lemma 5, one can establish that for all s > 0,

{(A-,:, T,) -', A;, I} is uniformly integrable.

Furthermore, using Lemma 6, one can show that for all s > 0,

15

(38)

(39)

(40)

(41)

(42)

(43)
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{

1 ~ s }
A- r+2 t (Y; - p) ,A ~ 1 is uniformly integrable. (44)

A HOlder's inequality argument will then yield (42), finishing the proof.

3.2 Estimating a Linear Combination of Two Quantiles

Let X;, X2 , •. be independent observations from a distribution function F. Suppose that

one wishes to estimate a linear combination of two quantiles ~p and ~q,

B= a ~p + f3 ~q, for some 0 <p,q < 1 and a,fJ ER.

For instance, one may be interested in the interquartile range R* = ~.75 - ~.25' a measure of

dispersion, or the midhinge M* = ~ (~.25 + ~.75)' which is a measure of central tendency. A

natural estimate of Bis the corresponding sample value

A A

Bn =a ~pn + fJ ~qn •

Without loss of generality, assume that 0 < p < q < 1. Under certain smoothness conditions

on F, iff(~ p ) and f( ~(I ) arc both nonzero,

where

•

•

I=

Hence, under such conditions,

P (1- p)
f2( ~p)

p (l-q)
f(~p) f(~q)

P (1- q)
f(~p) f(~q)

q (1- q)

f2( ~q)
•

with

(45)

(46)

•
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• Consider the problem of estimating 0 subject to the loss L; = A(0n - Or + n, A > O. Assume

that F is twice differentiable at ~p and ~q » and that f(~p ) and f(~q ) are both positive. From

(28) and (45), for large n, the risk is asymptotically

(47)

•

as in (3). The minimum risk occurs (asymptotically) at n= no where

[JAa*] 5 no 5 [JAa*] +1,

and equals Rno ~ 2JAa* ~ 2no' In practice, however, f(~p), f(~q), and hence a* are

unknown, making the best fixed sample size unavailable. This motivates the following
sequential procedure.

Define sequences {kIn} and {k2n} as in (5). Similarly, define

n.; =nq-Jnq(l-q) and h2n=nq+Jnq(l-q). (48)

•

Without loss of generality, assume that these are sequences of integers. As in (7), one has the
estimates

j(q,)= 2~P (1- p) 1 ,
n X' k -X'kn. 2" n. 111

j(q,)=2~q(1-q) 1 ,
n X'h -Xn.•n. 2" ,"In

and hence

•

•

a 2 2 /31 2
(/2 = -.!!..(X - ¥ ) + _1/ (X - X )

n 4 n:*2n 4 II:k1" 4 ":h~,, n:h1n

Therefore, a natural choice for a stopping rule is

afJ p (1 - q) ( )( ) n2 }+- nX. -X. X. -X. 5-,2 q (1- p) n.k2n n.k.n n.h2n n.l'ln A

where nA may depend on A.

(49)

(50)
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THEOREM 3. Suppose XI X 2 : · · are independent observations with a common distribution

function F. Assume that F is twice differentiable at ~p and ~q » with F' (~p ) = f(~p ) >°and

F'(e.) = f( ~q) <°and that Elx; IA < 00 for some A> 0. Assume further that f' exists and

is bounded in some neighborhoods of ~p and ~q' If TA is defined by (50), and nA = cAO for

some c> 0, 0 E(0, ~), then as A~ 00,

•

t,
(51)-~la.s.,

no

ETA ~1 •(52)
no

and

RT
A

=.:1A(BTA - Br+ TA] ~ 1.
(53)e; 2.J/i(J'*

In other words, the stopping rule TA provides asymptotic risk efficiency, as desired.
The following lemmas, which concern uniform integrability of positive and negative

powers of A- 1/2T
A , are used in the proof ofTheorem 3.

LEMMA 7. Suppose F has a derivative 011

and F'(x) = f(x) ~ to >°for every x in Be' for some to, B> 0. Assume further that

EIXI\A < 00 for some A> 0. If TA is defined by (50), then for every s > 0,

{(A -1/2 TAr'A ~ I} is uniformly integrable.

PROOF. It suffices to show that as K ~ 00,

uniformly in A for all 0 > 0. Fix A > °and let m =[KA 1/2]. For r > 0,

•

•

P(TA >KA"')';p{'f-(xm.,. -Xm•.)' +~' (Xm,,. -Xm,J

+ afJ p (l-q) (X -x )(x -x » m}
2 q (1 _p) m:k2m m:k1m m:h2m m:h1m A

(54)

•
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As in Section 2, one obtains from Sen's (1959) result that as m ~ 00,
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•

•

•

•

Thus, as K ~ 00, p(TA > KA 1/2) s Arm -r o(m-r) =o(K-2r) uniformly in A, proving the

lemma.

LEMMA 8. Assume that F is twice differentiable at c;pand c;q. with F'(c;p) = f( c; p) >°and

F'(c;q) = f( c;q) > 0, and that f' exists and is bounded in some neighborhoods of c;pand c;q.

Assume further that EIXII
A

< 00 for some A> 0. If TA is defined by (50), and nA =cAO for

some c > 0, 8 > 0, then for evelY s > 0,

{(A -I 2 r, f', A ~ 1} is uniformly integrable.

PROOF. It suffices to show that for s >°and some r E (0,1),

Notice that

{ (
a 2 )2 If 2

PT ~ -fA ~P inf -X. -X. +-X. -X.(A r ) n
A

Soj So r,fA 4 (rklj j:k1j 4 (rhlj rhlj)

+ afJ p(l-q) (X.. -X" )(x.. -X" )~ s r-fA}.
2 q (1- p) j.k1j j.k1j j.h1j j.h1j ) A

Consider two cases, (i) afJ> 0, and (ii) afJ < 0. Under case (i),
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where for each j, Rpj , is the difference of remainder terms associated with the central order
~

statistics Xj:
k 1j

and Xj:k2j
around c;pj. Choose r small enough so that

Then from Lemma 4, one obtains that

P(TA 5:rJA) 5: p{ inf .J]Rpj 5: -~P(l-)P)}
" A SJSr JA f c;p

5: I P {1.J]RpjI~ ~~p(:---l-~p)}
J=IIA f(c;p)

co

5: 0(1) I o(J-at), aE(O,t)
j=IIA

1
= O(n)-at), t >-,

a

which is o( A -512 ) as A~ 00, for sufficiently large t. For case (ii), notice that p < q implies

that pi1- q) < I. Then, since ap < 0,
q 1- p)

~

where Rqj is the analogue of Rpj corresponding to c;qj. As in case (i), choose r small

enough so that for any t > 0,

p(TA 5: rJA) 5: o(1rf (E la.J]Rpjl
t

+ E!,a.J]Rqjjt).
j=IIA

This yields the desired order of magnitude as A~ 00, by applying Lemma 4 and picking
t large enough. Therefore, in either case, for every s > 0,

•

..

•

•

•
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proving the lemma.
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PROOF OF THEOREM 3. As above, (51) follows immediately from almost sure

convergence of J(;p) and J(;q),and Lemma 1 of Chow and Robbins (1965). From

Lemma 7, for every S > 0,

• Hence (52) is clear.
To prove (53), it suffices to show that

JA ( )2-E 0T -0 ~lasA~oo.
0"* A

(55)

(56)

•

'.

Let 1'; = I( I and Zj = I( I' i =1,2, .... For each n, let Rpn and Rqn be the remainder
Xi S;~p Xi S;~q .. ..

terms in the Bahadur representations of ; pn and;qn» respectively. As above, since

TA ~ 00 a.s. as A ~ 00, Bahadur's result allows one to write

where each of R"T, and RqTAis o(TA -3/4 (log TAt 4
) a.s. as A~ 00. Let

W (r - y;) j q - Zi)' 1 2
i =a f( ¢1') +Pl f( ;J .t = , ," '.

Then

JA E(OT _ 0)2 =_1 E(JA Wr 2)+ _1 E(JA(a RpT + PRqT)2)
0" * A 0" * .1 0" * A A

+:* E(JA WT)a RpTA+ PRqTJ).

As in Section 2 it will be argued that

(57)

•
and that
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these are sufficient to prove (56). Write

Since as A ~ 00,

(58) .'

•
T fl:: WT d

and ,r;/ ~ 1 a.s., by Anscombe's Theorem, A ~ N(o,l) as A~ 00.
A 0"* 0"*

-fA W
T

2 d

Consequently, A ~ x/ as A ~ 00.
0"*

For s > 0, write

From Lemma 6, in view of (55), {IA-1i4I~1 Wi \S, A ~ I} is uniformly integrable, for every

s > 0. Moreover, from Lemma 8, for every s > 0, {(A-1/2 TArs
, A ~ I} is uniformly

integrable. Therefore, by a Holder's inequality argument, {IA 1/4 W
TA

r, A~ I} is uniformly

integrable, for every s > 0. Hence (57) is proved. (58) follows from the fact that

which can be verified as in Section 2 (see (24». This concludes the proof of Theorem 3.

REMARK 3. The sequential procedure derived above can be modified to work for the loss
function

Alen - elr
+ n, A > 0, r > 0.

Similar results can be obtained under the assumptions of Theorem 3, with "0 E (o,~)"
r+2

replacing" 0 E ( 0, ~)" .

•

.'

•
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• 4. SIMULATION STUDIES

•

Monte Carlo studies were conducted to see how the sequential procedure proposed in
Section 2 performed under moderate sample sizes. Expected sample sizes and risks were
estimated for selected distributions. All estimates were based on 10,000 simulations.

Expected sample sizes and risks were estimated for the following distributions:
(a) standard normal, for p = .5, .75; (b) exponential with mean 1 (EXP), for p = .25, .5, .75;
(c) double exponential with mean 0 and scale parameter 1 (DEXP), p = .5; and (d) standard
Cauchy, for p = .5. The values of A were 400, 1,000,4,000 and 10,000. The corresponding
values of nA were 10, 15, 25 and 35. The estimates obtained are provided in Table 1. For

each quantile, the entries for each value ofA are the estimated expected sample size E~, the

best fixed sample size no, the estimated risk ~T
A

' the minimum risk Rno' and the estimated

risk efficiency Rno / ~T
A

' Standard errors of E~ and ~T
A

are provided in parentheses.

Table 1 shows that, on average, the sequential rule requires fewer observations than the
best fixed-sample-size rule. It is clear from the last column of the table that the procedure
worked well in general. Although the estimated risk ratios under the exponential model for
p = .75, and the double exponential for p = .5, are not as impressive as the others, they are
still around 90% for large values of A. An interesting phenomenon is demonstrated by the

exponential model for p = .25, when A = 400: the regret (~TA - Rno) is significantly less

than zero. In this case, the sequential procedure appears to be actually better than its best
fixed-sample-size counterpart.

•
Table I.

Simulated Expected Sample Sizes, Risks and Risk Efficiencies for Selected Distributions

Distribution p A ETA no ~T,
(s. e.) (s. e.)

.9163

.8938

.9111

.9261

.9434

.9453

.9314

86.18

79.27

50.13

172.36

250.66

158.53

400

4,000

1,000

1,000

4,000

10,000

10,000

.5N(O,I) 20.37 25.07 53.14
(.08) (.48)

32.39 39.63 83.85
(.12) (.75)

64.77 79.27 170.20
(.24) (1.62)

104.41 125.33 270.66
(.34) (2.50)

...................................................................._ _ _ _ _ .
N(O,I) .75 400 21.02 27.25 59.83 54.51 .9111

(.10) (.59)

33.77 43.09 94.59
(.14) (.89)

68.76 86.18 192.85
(.26) (1.92)

11 O.77 136.26 297.41
(.39) (2.79)

•

•
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•
'fable 1. (cont.)

Distribution p A E~ no ~T
A

(s. e.) (s. e.)

•

•

•

.9047

.8996

.8869

.9310

.9206

.9450

.9088

.8891

.8885

.9432

.9876

.9687

.9856

1.0045

1.0278a

63.24

99.34

63.24

73.03

23.09

36.51

200.00

126.49

314.16

198.69

346.41

219.09

109.54

126.49

115.47

400

4,000

1,000

4,000

1,000

4,000

1,000

1,000

4,000

4,000

1,000

10,000

10,000

10,000

10,000

.25EXP 11.84 11.55 22.47
(.03) (.21)

18.26 18.26 36.35
(.05) (.30)

33.25 36.51 74.09
(.10) (.66)

50.88 57.74 119.20
(.16) (.99)

.............................................................................................._ - .
EXP .5 400 16.78 20.00 40.08 40.00 .9979

(.07) (.33)

26.09 31.62 64.04
(.10) (.56)

51.31 63.24 134.11
(.19) (1.16)

10,000 82.02 100.00 216.73 200.00 .9228

...................................................................._ _ (~?).,_ J}.:.~~2.._ ..
EXP .75 400 25.76 34.64 77.86 69.28 .8898

(.13) (.81)

42.11 54.77 123.21
(.20) (1.22)

87.16 109.54 246.58
(.35) (2.40)

142.63 173.20 381.17
(.50) (3.56)

...................................................................._ _ _ _ _ .
CAUCHY .5 400 26.37 31.42 65.93 62.83 .9530

(.11) (.67)

41.69 49.67 105.12
(.16) (1.02)

82.80 99.34 215.84
(.29) (2.11)

133.17 157.08 337.46
(.42) (3.00)

..DE")ep · · · · ·j·_..· ·..·400·_ ·..·..i"93i-·· ·..·2(>:OO··..· ·..4~i".·9i·_· ..· ·40-:ci·O..· ·..·..·j·7io..·
(.08) (.45)

30.17 31.62 71.31
(.11) (.68)

57.91 63.24 140.61
(.21) (1.32)

90.37 100.00 221.07
(.30) (2.09)

a Estimated regret is significantly less than zero.

•
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